Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Waste Manag ; 178: 292-300, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38422682

RESUMEN

Clean up following the wide-area release of a persistent biological agent has the potential to generate significant waste. Waste containing residual levels of biological contaminants may require off-site shipment under the U.S. Department of Transportation's (US DOT) solid waste regulations for Category A infectious agents, which has packaging and size limitations that do not accommodate large quantities. Treating the waste on-site to inactivate the bio-contaminants could alleviate the need for Category A shipping and open the possibility for categorizing the waste as conventional solid waste with similar shipping requirements as municipal garbage. To collect and package waste for on-site treatment, a semi-permeable nonwoven-based fabric was developed. The fabric was designed to contain residual bio-contaminants while providing sufficient permeability for penetration by a gaseous decontamination agent. The nonwoven fabric was tested in two bench-scale experiments. First, decontamination efficacy and gas permeability were evaluated by placing test coupons inoculated with spores of a Bacillus anthracis surrogate inside the nonwoven material. After chlorine dioxide fumigation, the coupons were analyzed for spore viability and results showed a ≥6 Log reduction on all test materials except glass. Second, filters cut from the nonwoven material were tested in parallel with commercially available cellulose acetate filters having a known pore size (0.45 µm) and results demonstrate that the two materials have similar permeability characteristics. Overall, results suggest that the nonwoven material could be used to package waste at the point of generation and then moved to a nearby staging area where it could be fumigated to inactivate bio-contaminants.


Asunto(s)
Bacillus anthracis , Residuos Sólidos , Esporas Bacterianas/fisiología , Descontaminación/métodos
2.
PLoS One ; 18(7): e0287664, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37498861

RESUMEN

The COVID-19 pandemic resulted in many supply chain issues, including crippling of essential personal protective equipment (PPE) needed for high-risk occupations such as those in healthcare. As a result of these supply chain issues, unprecedented crisis capacity strategies were implemented to divert PPE items such as filtering facepiece respirators (FFRs, namely N95s) to those who needed them most for protection. Large-scale methods for decontamination were used throughout the world to preserve these items and provided for their extended use. The general public also adopted the use of non-specialized protective equipment such as face coverings. So, the need for cleaning, decontamination, or disinfection of these items in addition to normal clothing items became a necessary reality. Some items could be laundered, but other items were not appropriate for washing/drying. To fill research gaps in small-scale, non-commercial cleaning and disinfection, this bench-scale research was conducted using small coupons (swatches) of multiple PPE/barrier protection materials inoculated with virus (non-pathogenic bacteriophages Phi6 and MS2) and tested against a range of decontamination methods including bleach-, alcohol- and quaternary ammonium compound (QAC)-based liquid sprays, as well as low concentration hydrogen peroxide vapor (LCHPV) and bench-scale laundering. In general, non-porous items were easier to disinfect than porous items, and the enveloped virus Phi6 was overall easier to inactivate than MS2. Multiple disinfection methods were shown to be effective in reducing viral loads from PPE coupons, though only laundering and LCHPV were effective for all materials tested that were inoculated with Phi6. Applications of this and follow-on full-scale research are to provide simple effective cleaning/disinfection methods for use during the current and future pandemics.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2 , Pandemias/prevención & control , Desinfección/métodos , Equipo de Protección Personal , Equipo Reutilizado , Descontaminación/métodos
3.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36705271

RESUMEN

Bacillus anthracis and other environmentally persistent pathogens pose a significant threat to human and environmental health. If contamination is spread over a wide area (e.g. resulting from a bioterrorism or biowarfare incident), readily deployable and scalable sample collection methods will be necessary for rapidly developing and implementing effective remediation strategies. A recent surge in environmental (eDNA) sampling technologies could prove useful for quantifying the extent and levels of contamination from biological agents in environmental and drinking water. In this study, three commonly used membrane filtration materials (cellulose acetate, cellulose nitrate, and nylon) were evaluated for spore filtration efficiency, yielding recoveries from 17%-68% to 25%-117% for high and low titer samples, respectively, where cellulose nitrate filters generated the highest recoveries. A holding time test revealed no statistically significant differences between spore recoveries when analyzed at the specified timepoints, suggesting that eDNA filter sampling techniques can yield and maintain a relatively high recovery of spores for an extended period of time between filtration and analysis without a detrimental impact on spore recoveries. The results shown here indicate that emerging eDNA technologies could be leveraged for sampling following a wide-area contamination incident and for other microbiological water sampling applications.


Asunto(s)
Bacillus anthracis , Agua , Humanos , Colodión , Esporas Bacterianas/genética , Bacillus anthracis/genética , Filtración
4.
J Chem Health Saf ; 30: 270-278, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38269393

RESUMEN

Field-level exercises with the purpose to assess remediation following the deliberate release of a highly toxic chemical in an indoor environment can be conducted using low(er) toxicity simulants if they are closely linked to the behavior of the toxic chemical itself. Chemical warfare agent (CWA) simulants have been identified on their suitability based on chemical structural similarities and associated physical and chemical properties. However, there are no reported studies that combine measurement of simulant parameters like persistence on surfaces, ability to sample for, and capability to degrade during the decontamination phase such that the level of success of a field-level exercise can be quantified. Experimental research was conducted to assess these gaps using a select number of CWA simulants. The organophosphate pesticide malathion was found to be a suitable simulant for use in field-level exercises that simulate the release of the highly persistent nerve agent VX based on its high persistence, effective surface sampling and analysis using standard analytical equipment, and the in situ degradation in the presence of different oxidizing decontaminants.

5.
J Vis Exp ; (184)2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35816011

RESUMEN

This protocol provides an example of a laboratory process for conducting laundering studies that generate data on viral disinfection. While the protocol was developed for research during the coronavirus disease 2019 (COVID-19) pandemic, it is intended to be a framework, adaptable to other virus disinfection studies; it demonstrates the steps for preparing the test virus, inoculating the test material, assessing visual and integrity changes to the washed items due to the laundering process, and quantifying the reduction in viral load. Additionally, the protocol outlines the necessary quality control samples for ensuring the experiments are not biased by contamination and measurements/observations that should be recorded to track the material integrity of the personal protective equipment (PPE) items after multiple laundering cycles. The representative results presented with the protocol use the Phi6 bacteriophage inoculated onto cotton scrub, denim, and cotton face-covering materials and indicate that the hot water laundering and drying process achieved over a 3-log (99.9%) reduction in viral load for all samples (a 3-log reduction is the disinfectant performance metric in U.S. Environmental Protection Agency's Product Performance Test Guideline 810.2200). The reduction in viral load was uniform across different locations on the PPE items. The results of this viral disinfection efficacy testing protocol should help the scientific community explore the effectiveness of home laundering for other types of test viruses and laundering procedures.


Asunto(s)
COVID-19 , Desinfectantes , Lavandería , COVID-19/prevención & control , Desinfectantes/farmacología , Desinfección/métodos , Humanos , Lavandería/métodos , Agua
6.
J Appl Microbiol ; 132(4): 2773-2780, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34878661

RESUMEN

AIMS: The goal of this study was to measure the removal efficacy of Bacillus atrophaeus spores from a parking lot using spray-based washing methods (a pressure washer and a garden hose) and wash aids. B. atrophaeus is a commonly used nonpathogenic surrogate for B. anthracis, the causative agent of anthrax and a deadly bioterrorism agent that would cause major disruptions and damage to public health should it be disseminated over an urban area. METHODS AND RESULTS: Five wash aids (1 mM sodium chloride, an Instant Ocean® seawater solution, 0.01% Tween 20, 0.01% sodium dodecyl sulfate, and unamended tap water) were used along with two different spray sequences in this study. Across all treatment conditions, 3.7-6.4 log10  colony forming unit were recovered in the runoff water, and 0.15%-23% of spores were removed from the surface of the parking lot. CONCLUSIONS: Pressure washing removed more spores than the garden hose, and for both types of washing methods, the first pass removed more spores than the subsequent passes. The Instant Ocean and Tween 20 wash aids were found to significantly increase the percentage of spore removal when using the pressure washer, but the overall increase was only 1%-2% compared to the tap water alone. SIGNIFICANCE AND IMPACT OF STUDY: This study provides public officials and emergency responders with baseline spore physical removal information for situations where a corrosive disinfectant might have a negative impact on the environment and washing is being considered as an alternative remediation approach.


Asunto(s)
Carbunco , Bacillus anthracis , Bacillus , Humanos , Hidrocarburos , Esporas Bacterianas
7.
J Appl Microbiol ; 132(3): 1813-1824, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34695284

RESUMEN

AIMS: Antimicrobial coatings, for use in combination with routine cleaning and disinfection, were evaluated for their effectiveness in reducing virus concentration on stainless steel surfaces. METHODS: Twenty antimicrobial coating products, predominantly composed of organosilane quaternary ammonium compounds, were applied to stainless steel coupons, dried overnight and evaluated for efficacy against Φ6, an enveloped bacteriophage. Additionally, two peel and stick polymer-based films, a copper-based film and three copper alloys were evaluated. Efficacy was determined by comparison of recoveries from uncoated (positive control) and coated (test) surfaces. RESULTS: The results indicated that some of the coating products initially demonstrated >3-log reduction of Φ6; no direct correlation of efficacy was observed with an active ingredient or its concentration. The peel and stick films and copper alloys each demonstrated efficacy in initial testing. However, none of the spray-based products retained efficacy after subjecting the coating to abrasion with either a hypochlorite or quaternary ammonium-based solution applied in accordance with EPA Interim Guidance for Evaluating the Efficacy of Antimicrobial Surface Coatings. Of the products tested for this durability, only one peel and stick polymeric film retained efficacy; the copper alloys were not tested for their durability in this study. CONCLUSIONS: These results suggest that while some organosilane quaternary ammonium compound-based products demonstrate antiviral efficacy, more research and development is needed to understand effective formulations with sufficient durability to perform as supplements to routine cleaning and disinfection.


Asunto(s)
Antiinfecciosos , Bacteriófagos , Antibacterianos , Antiinfecciosos/farmacología , Desinfección , Acero Inoxidable
8.
PLoS One ; 16(9): e0257434, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34591869

RESUMEN

Although research has shown that the COVID-19 disease is most likely caused by airborne transmission of the SARS-CoV-2 virus, disinfection of potentially contaminated surfaces is also recommended to limit the spread of the disease. Use of electrostatic sprayers (ESS) and foggers to rapidly apply disinfectants over large areas or to complex surfaces has emerged with the COVID-19 pandemic. ESSs are designed to impart an electrostatic charge to the spray droplets with the goal of increasing deposition of the droplets onto surfaces, thereby promoting more efficient use of the disinfectant. The purpose of this research was to evaluate several spray parameters for different types of sprayers and foggers, as they relate to the application of disinfectants. Some of the parameters evaluated included the spray droplet size distribution, the electrostatic charge, the ability of the spray to wrap around objects, and the loss of disinfectant chemical active ingredient due to the spray process. The results show that most of the devices evaluated for droplet size distribution had an average volume median diameter ≥ 40 microns, and that four out of the six ESS tested for charge/mass produced sprays of at least 0.1 mC/kg. A minimal wrap-around effect of the spray deposition onto a cylindrical object was observed. The loss of disinfectant active ingredient to the air due to spraying was minimal for the two disinfectants tested, and concurrently, the active ingredient concentrations of the liquid disinfectants sprayed and collected 3 feet (1 meter) away from the spray nozzle do not decrease.


Asunto(s)
COVID-19/prevención & control , Desinfectantes/administración & dosificación , Desinfección/instrumentación , Desinfectantes/farmacología , Desinfección/métodos , Diseño de Equipo , Humanos , SARS-CoV-2/efectos de los fármacos , Electricidad Estática , Propiedades de Superficie/efectos de los fármacos
9.
Water Resour Res ; 57(3): 1-11, 2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35350225

RESUMEN

After a biological terrorist attack, understanding the migration of agents such as Bacillus anthracis is critical due to their deadly nature. This is important in urban settings with higher likelihood of human exposure and a large fraction of impervious materials contributing to pollutant washoff. The study goals were to understand the removal of spores from urban surfaces under different rainfall conditions, to compare washoff of two B. anthracis surrogate spores, and to compare two empirical fits for the first flush of spores from small areas. Concrete and asphalt were inoculated with either Bacillus atrophaeus or Bacillus thuringiensis kurstaki spores and exposed to simulated rainfall. The study assessed goodness-of-fit for the Storm Water Management Model (SWMM)'s exponential washoff function compared to an alternative two-stage exponential function. The highest average washoff of spores was 15% for an hour-long experiment. Spore washoff was not significantly different for the two spore types, but there were significant differences in washoff from asphalt versus concrete with more occurring from asphalt. Average kinetic energy of the storm event impacted washoff from asphalt, but not concrete. The two-stage function had a better goodness-of-fit than the SWMM exponential function. As such, emergency responders should be aware that the spread of contamination is impacted by the droplet characteristics of the storm event and the surface material type in the contaminated area; modelers should be aware that different data-fitting approaches may be more appropriate for first-flush calculations of small washoff areas than those used for continuous long-term simulation of large subcatchments.

10.
J Environ Manage ; 280: 111684, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33303252

RESUMEN

In the event of a large, aerosol release of Bacillus anthracis spores in a major metropolitan area, soils and other outdoor materials may become contaminated with the biological agent. A study was conducted to assess the in-situ remediation of soil using a dry thermal treatment approach to inactivate a B. anthracis spore surrogate inoculated into soil samples. The study was conducted in two phases, using loam, clay and sand-based soils, as well as biological indicators and spore-inoculated stainless-steel coupons. Initial experiments were performed in an environmental test chamber with temperatures controlled between 80 and 110 °C, with and without added humidity, and with contact times ranging from 4 h to 7 weeks. Tests were then scaled up to assess the thermal inactivation of spores in small soil columns, in which a heating plate set to 141 °C was applied to the soil surface. These column tests were conducted to assess time requirements to inactivate spores as a function of soil depth and soil type. Results from the initial phase of testing showed that increasing the temperature and relative humidity reduced the time requirements to achieve samples in which no surrogate spores were detected. For the test at 80 °C with no added humidity, 49 days were required to achieve soil samples with no spores detected in clay and loam. At 110 °C, 24 h were required to achieve samples in which no spores were detected. In the column tests, no spores were detected at the 2.5 cm depth at four days and at the 5.1 cm depth at 21 days, for two of the three soils. The experiments described in the study demonstrate the feasibility of using dry thermal techniques to decontaminate soils that have been surficially contaminated with B. anthracis spores.


Asunto(s)
Bacillus anthracis , Descontaminación , Humedad , Suelo , Esporas Bacterianas
11.
Environ Monit Assess ; 192(7): 455, 2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32583176

RESUMEN

Bacillus anthracis, the causative agent for anthrax, is a dangerous pathogen to humans and has a history as a bioterrorism agent. While sampling methods have been developed and evaluated for characterizing and clearing contaminated indoor sites, the performance of these sampling methods is unknown for use in outdoor environments. This paper presents surface sampling data for Bacillus atrophaeus spores, a surrogate for B. anthracis, from a 210-day outdoor study that evaluated the detection and recovery of spores using five different sampling methods as follows: sponge sticks, 37-mm vacuum filter cassettes, residential wet vacuums, robotic floor cleaners, and grab samples of soil, leaves, and grass. The spores were applied by spraying a liquid suspension onto the surfaces. Both asphalt and concrete surfaces were sampled by all the surface sampling methods, excluding grab sampling. Stainless steel coupons placed outdoors were additionally sampled using sponge sticks. Sampling methods differed in their ability to collect detectable spores over the duration of the study. The 37-mm vacuums and sponge sticks consistently detected spores on asphalt through day 37 and robots through day 99. The wet vacuums detected spores on asphalt for days 1 and 4, but not again until day 210. On concrete, all samplers detected spores until day 210 except for sponge stick samplers that detected spores only up until the day 99 time point. For all sampling methods, spore recoveries were higher from concrete than from asphalt surfaces. There was no statistically significant difference in recoveries of sponge sticks and 37-mm vacuums from either asphalt or concrete surfaces. Processing of grab samples was challenging due to non-target background microorganisms resulting in high detection limits for the samples.


Asunto(s)
Bacillus anthracis , Bacillus , Monitoreo del Ambiente , Humanos , Esporas Bacterianas
12.
J Microbiol Methods ; 156: 5-8, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30452937

RESUMEN

Environmental sampling is a critical component of the post decontamination verification process following a bioterrorism event. The current work was performed to produce a less labor-intensive method for processing cellulose sponge-wipes used for sampling areas potentially contaminated with low concentrations (i.e., post-decontamination) of Bacillus anthracis spores. An alternative fast-analysis processing method was compared to the processing protocol validated by the Centers for Disease Control and Prevention (CDC) for the Laboratory Response Network (LRN). Glazed tile coupons (1102 cm2) were inoculated with 50, 500, or 5000 spores of Bacillus thuringiensis subsp. kurstaki (Btk), then sampled with cellulose sponges. Sampling was limited to a 25- by 25-cm area and performed in the same manner as the CDC sampling method. Samples were then processed using either the alternative "Fast Analysis" method or the "CDC method". Three different analysts repeated the tests at each concentration utilizing each method. Mean recoveries, labor time, and potentially hazardous waste produced were compared for the two methods. The mean percent recoveries and standard errors for the samples processed using the "CDC method" were 39.9 ±â€¯6.7, 43 ±â€¯7.6, and 36.8 ±â€¯10.1 for the 5000, 500, and 50 spore loading levels, respectively; compared to 54.2 ±â€¯12.9, 64.2 ±â€¯21.7, and 45.2 ±â€¯8.6 for the "Fast Analysis" method. At each titer tested the "Fast Analysis" method resulted in a statistically significant higher percent recovery. Furthermore, analysts processed samples utilizing the "Fast Analysis" method in less than half the time and generated half as much potentially hazardous waste compared to the "CDC method".


Asunto(s)
Bacillus thuringiensis/aislamiento & purificación , Armas Biológicas , Descontaminación/métodos , Manejo de Especímenes/métodos , Esporas Bacterianas/aislamiento & purificación , Técnicas Bacteriológicas
13.
Remediation (N Y) ; 30(1): 47-56, 2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-32831530

RESUMEN

Remediation and recovery efforts after a release of Bacillus anthracis (anthrax) spores may be difficult and costly. In addition, response and recovery technologies may be focused on critical resources, leaving the small business or homeowner without remediation options. This study evaluates the efficacy of relatively low levels of hydrogen peroxide vapor (HPV) delivered from off-the-shelf equipment for the inactivation of Bacillus spores within an indoor environment. Decontamination evaluations were conducted in a house using both Bacillus atrophaeus var. globigii (Bg; as surrogates for B. anthracis ) inoculated on the carpet and galvanized metal as coupons and Geobacillus stearothermophilus (Gs) as biological indicators on steel. The total decontamination time ranged from 4 to 7 days. Using the longer exposure times, low concentrations of HPV (average levels below 20 parts per million) effectively inactivated Bg and Gs spores on the materials tested. The HPV was generated with commercial humidifiers and household-strength hydrogen peroxide solutions. The presence of home furnishings did not have a significant impact on HPV efficacy. This simple, inexpensive, and effective decontamination method could have significant utility for remediation following a B. anthracis spore release, such as following a terrorist attack.

14.
Environ Sci Technol ; 49(19): 11543-50, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26332991

RESUMEN

Disposal of electronic waste (e-waste) in landfills, incinerators, or at rudimentary recycling sites can lead to the release of toxic chemicals into the environment and increased health risks. Developing e-waste recycling technologies at commercial facilities can reduce the release of toxic chemicals and efficiently recover valuable materials. While these e-waste operations represent a vast improvement over previous approaches, little is known about environmental releases, workplace exposures, and potential health impacts. In this study, airborne particulate matter (PM) was measured at various locations within a modern U.S.-based e-waste recycling facility that utilized mechanical processing. In addition, composite size fractionated PM (coarse, fine and ultrafine) samples were collected, extracted, chemically analyzed, and given by oropharyngeal aspiration to mice or cultured with lung slices for lung toxicity tests. Indoor total PM concentrations measured during the study ranged from 220 to 1200 µg/m(3). In general, the coarse PM (2.5-10 µm) was 3-4 times more abundant than fine/ultrafine PM (<2.5 µm). The coarse PM contained higher levels of Ni, Pb, and Zn (up to 6.8 times) compared to the fine (0.1-2.5 µm) and ultrafine (<0.1 µm) PM. Compared to coarse PM measurements from a regional near-roadway study, Pb and Ni were enriched 170 and 20 times, respectively, in the indoor PM, with other significant enrichments (>10 times) observed for Zn and Sb, modest enrichments (>5 times) for Cu and Sr, and minor enrichments (>2 times) for Cr, Cd, Mn, Ca, Fe, and Ba. Negligible enrichment (<2 times) or depletion (<1 time) were observed for Al, Mg, Ti, Si, and V. The coarse PM fraction elicited significant pro-inflammatory responses in the mouse lung at 24 h postexposure compared to the fine and ultrafine PM, and similar toxicity outcomes were observed in the lung slice model. We conclude that exposure to coarse PM from the facility caused substantial inflammation in the mouse lung and enrichment of these metals compared to levels normally present in the ambient PM could be of potential health concern.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire Interior/análisis , Residuos Electrónicos , Reciclaje , Contaminantes Atmosféricos/química , Animales , Femenino , Éteres Difenilos Halogenados/análisis , Pulmón/efectos de los fármacos , Metales/análisis , Ratones Endogámicos , Técnicas de Cultivo de Órganos , Tamaño de la Partícula , Material Particulado/análisis , Neumonía/inducido químicamente , Pruebas de Toxicidad Aguda/métodos , Estados Unidos
15.
J Air Waste Manag Assoc ; 65(2): 145-53, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25947050

RESUMEN

A wide-area Bacillus anthracis spore contamination incident will present immense challenges related to decontamination capacity. For this reason, fumigation with methyl bromide (MeBr) has been proposed as a potential remediation option. Although a few bench-scale laboratory studies have been conducted to evaluate activated carbon for the capture of MeBr, these studies were conducted at conditions replicating commodity fumigation using relatively low MeBr concentrations, temperatures, and/or relative humidity (RH) levels. The more rigorous MeBr fumigation requirements to fully inactivate B. anthracis spores are much more of a challenge for an activated carbon system (ACS) to capture MeBr, and warrant their own investigation. Further, while the aforementioned studies have shown activated carbon to be a possible option for the capture of MeBr in gas streams, these tests were conducted at laboratory bench scale, and thus lack operational perspective and data. Thus, we present for the first time the results of a full-scale study to evaluate an ACS employed for the capture of MeBr at conditions that would be used for decontaminating a building structure contaminated with B. anthracis spores. Airflow rate, temperature, RH, and MeBr levels were measured within the ACS during its operation. Despite the relatively high humidity, temperature, and MeBr levels, the MeBr capture efficiency of the ACS was demonstrated to be more than 99%. The concentration of MeBr exhausted from the structure was reduced from 41,000 to 136 ppmv in 3.5 hr, corresponding to an overall atmospheric emission rate of less than 2 kg. The practical adsorption rate of the ACS was determined to be 4.83 kg MeBr/100 kg carbon. The information and data presented here will facilitate future use of this technology when fumigating with MeBr.


Asunto(s)
Contaminantes Atmosféricos/química , Carbón Orgánico/química , Descontaminación/métodos , Desinfectantes/química , Hidrocarburos Bromados/química , Adsorción , Bacillus anthracis/efectos de los fármacos , Fumigación , Esporas Bacterianas/efectos de los fármacos
16.
World J Microbiol Biotechnol ; 30(10): 2609-23, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24928258

RESUMEN

Decontamination studies investigating the effectiveness of products and processes for the inactivation of Bacillus species spores have traditionally utilized metering viable spores in a liquid suspension onto test materials (coupons). The current study addresses the representativeness of studies using this type of inoculation method compared to when coupons are dosed with a metered amount of aerosolized spores. The understanding of this comparability is important in order to assess the representativeness of such laboratory-based testing when deciding upon decontamination options for use against Bacillus anthracis spores. Temporal inactivation of B. anthracis surrogate (B. subtilis) spores on representative materials using fumigation with chlorine dioxide, spraying of a pH-adjusted bleach solution, or immersion in the solution was investigated as a function of inoculation method (liquid suspension or aerosol dosing). Results indicated that effectiveness, measured as log reduction, was statistically significantly lower when liquid inoculation was used for some material and decontaminant combinations. Differences were mostly noted for the materials observed to be more difficult to decontaminate (i.e., wood and carpet). Significant differences in measured effectiveness were also noted to be a function of the pH-adjusted bleach application method used in the testing (spray or immersion). Based upon this work and the cited literature, it is clear that inoculation method, decontaminant application method, and handling of non-detects (i.e., or detection limits) can have an impact on the sporicidal efficacy measurements.


Asunto(s)
Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/fisiología , Descontaminación/métodos , Contaminación de Equipos , Aerosoles , Blanqueadores/farmacología , Compuestos de Cloro/farmacología , Desinfectantes/farmacología , Fumigación , Concentración de Iones de Hidrógeno , Óxidos/farmacología , Esporas Bacterianas/efectos de los fármacos
17.
J Microbiol Methods ; 96: 1-5, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24184312

RESUMEN

The objective of this study was to compare an extraction-based sampling method to two vacuum-based sampling methods (vacuum sock and 37mm cassette filter) with regards to their ability to recover Bacillus atrophaeus spores (surrogate for Bacillus anthracis) from pleated heating, ventilation, and air conditioning (HVAC) filters that are typically found in commercial and residential buildings. Electrostatic and mechanical HVAC filters were tested, both without and after loading with dust to 50% of their total holding capacity. The results were analyzed by one-way ANOVA across material types, presence or absence of dust, and sampling device. The extraction method gave higher relative recoveries than the two vacuum methods evaluated (p≤0.001). On average, recoveries obtained by the vacuum methods were about 30% of those achieved by the extraction method. Relative recoveries between the two vacuum methods were not significantly different (p>0.05). Although extraction methods yielded higher recoveries than vacuum methods, either HVAC filter sampling approach may provide a rapid and inexpensive mechanism for understanding the extent of contamination following a wide-area biological release incident.


Asunto(s)
Filtros de Aire/microbiología , Bacillus/aislamiento & purificación , Técnicas Bacteriológicas/métodos , Manejo de Especímenes/métodos , Esporas Bacterianas/aislamiento & purificación
18.
J Microbiol Methods ; 95(3): 389-96, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24184017

RESUMEN

In this study, four commonly-used sampling devices (vacuum socks, 37 mm 0.8 µm mixed cellulose ester (MCE) filter cassettes, 37 mm 0.3 µm polytetrafluoroethylene (PTFE) filter cassettes, and 3M™ forensic filters) were comparatively evaluated for their ability to recover surface-associated spores. Aerosolized spores (~10(5)CFUcm(-2)) of a Bacillus anthracis surrogate were allowed to settle onto three material types (concrete, carpet, and upholstery). Ten replicate samples were collected using each vacuum method, from each material type. Stainless steel surfaces, inoculated simultaneously with test materials, were sampled with pre-moistened wipes. Wipe recoveries were utilized to normalize vacuum-based recoveries across trials. Recovery (CFUcm(-2)) and relative recovery (vacuum recovery/wipe recovery) were determined for each method and material type. Recoveries and relative recoveries ranged from 3.8 × 10(3) to 7.4 × 10(4)CFUcm(-2) and 0.035 to 1.242, respectively. ANOVA results indicated that the 37 mm MCE method exhibited higher relative recoveries than the other methods when used for sampling concrete or upholstery. While the vacuum sock resulted in the highest relative recoveries on carpet, no statistically significant difference was detected. The results of this study may be used to guide selection of sampling approaches following biological contamination incidents.


Asunto(s)
Bacillus anthracis/aislamiento & purificación , Técnicas Bacteriológicas/métodos , Microbiología Ambiental , Manejo de Especímenes/métodos , Esporas Bacterianas/aislamiento & purificación , Vacio , Recuento de Colonia Microbiana
19.
Chemosphere ; 93(3): 494-8, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23871593

RESUMEN

Both long duration (>6h) and high temperature (up to 139°C) sampling efforts were conducted using ambient air sampling methods to determine if either high volume throughput or higher than ambient air sampling temperatures resulted in loss of target polychlorinated dibenzodioxins/dibenzofurans (PCDDs/PCDFs) from a polyurethane foam (PUF) sorbent. Emissions from open burning of simulated military forward operating base waste were sampled using EPA Method TO-9A for 185 min duration using a filter/PUF/PUF in series combination. After a 54 m(3) sample was collected, the sampler was removed from the combustion source and the second PUF was replaced with a fresh, clean PUF. An additional 6h of ambient air sampling (171 m(3)) was conducted and the second PUF was analyzed to determine if the PCDD/PCDF transferred from the filter and the first PUF. Less than 4.4% of the initial PCDD/PCDF was lost to the second PUF. To assess the potential for blow off of PCDD/PCDF analytes during open air sampling, the mobility of spiked mono- to hepta-PCDD/PCDF standards across a PUF sorbent was evaluated from ambient air temperatures to 145°C with total volumes between 600 L and 2400 L. Lower molecular weight compounds and higher flow amounts increased release of the spiked standards consistent with vapor pressure values. At 600 L total sampled volume, the release temperature for 1% of the tetra-CDD (the lowest chlorinated homologue with a toxic compound) was 87°C; increasing the volume fourfold reduced this temperature to 73°C.


Asunto(s)
Contaminantes Atmosféricos/análisis , Benzofuranos/análisis , Dioxinas/análisis , Monitoreo del Ambiente/métodos , Incineración , Dibenzofuranos Policlorados , Control de Calidad
20.
Environ Sci Technol ; 47(6): 2595-601, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-23431954

RESUMEN

Five commercially available domestic cleaning robots were evaluated on their effectiveness for sampling aerosol-deposited Bacillus atrophaeus spores on different indoor material surfaces. The five robots tested include three vacuum types (R1, R2, and R3), one wet wipe (R4), and one wet vacuum (R5). Tests were conducted on two different surface types (carpet and laminate) with 10(6) colony forming units of B. atrophaeus spores deposited per coupon (35.5 cm × 35.5 cm). Spores were deposited on the center surface (30.5 × 30.5 cm) of the coupon's total surface area (71.5 × 71.5 cm), and the surfaces were sampled with an individual robot in an isolation chamber. Chamber air was sampled using a biofilter sampler to determine the potential for resuspension of spores during sampling. Robot test results were compared to currently used surface sampling methods (vacuum sock for carpet and sponge wipe for laminate). The test results showed that the average sampling efficacies for R1, R2, and R3 on carpet were 26, 162, and 92% of vacuum sock sampling efficacy, respectively. On laminate, R1, R2, R3, R4, and R5 average sampling efficacies were 8, 11, 2, 62, and 32% of sponge wipe sampling efficacy, respectively. We conclude that some robotic cleaners were as efficacious as the currently used surface sampling methods for B. atrophaeus spores on these surfaces.


Asunto(s)
Bacillus/aislamiento & purificación , Monitoreo del Ambiente/instrumentación , Esporas Bacterianas/aislamiento & purificación , Diseño de Equipo , Pisos y Cubiertas de Piso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...